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A B S T R A C T

Hyperspectral images contain extensive spectral bands with rich spectral information that reflects object prop-
erties. Leveraging state-of-the-art deep learning techniques has proven to be effective in hyperspectral target
detection. However, compared to two-dimensional matrix data, the one-dimensional nature of spectral sequence
limits the information that can be extracted, posing a challenge for deep learning-based hyperspectral target
detection methodologies. To address this issue, a novel hyperspectral target detection method employing atrous
convolution with gramian angular field representations is proposed in this paper. This approach breaks the
barrier between one-dimensional vector and two-dimensional matrix by gramian angular field, transforming the
spectral sequences from one-dimensional vectors into two-dimensional matrices, enabling the exploration of
multidimensional relationships within spectral band relations through an atrous convolution-based spectral
feature extraction network. The proposed model transcends the traditional one-dimensional spectral target
detection limitations, offering a new perspective for spectral-based hyperspectral target detection. Experimental
results on four real-world hyperspectral datasets demonstrate that the proposed method significantly out-
performs existing state-of-the-art methods in detection performance, showcasing its potential for advancing
hyperspectral target detection.

1. Introduction

Hyperspectral images (HSIs) capture the spectral information of
objects across different wavelengths, providing more detailed and richer
spectral features, enabling more accurate description of the spectral
characteristics and material composition of object [1,2]. Unlike the RGB
images, which are limited to three spectral bands, HSIs contain hundreds
of bands, making them applicable in various applications, such as clas-
sification [3], target detection [4,5], and band selection [6,7], et al.
Among them, hyperspectral target detection focuses on extracting and
identifying specific targets within an HSI by exploring the unique
spectral features of different targets, which allow for effective distin-
guish and detect targets through spectral analysis. In terms of spectral
feature extraction, hyperspectral target detection utilizes the variations
in reflectance of objects across different spectral bands. By analyzing the
spectral responses of targets with different spectral bands, the relevant
feature information related to targets can be extracted. Therefore,
hyperspectral target detection has wide-ranging applications in many
fields [8–11]. Unlike RGB images where targets are often tagged using

bounding boxes, HTD focuses on the targets of interest in the scene to be
detected [12,13]. It considers all other scene components to be detected
except the object of interest as background. However, for HTD, the prior
knowledge generally possessed is only the spectral features of the target
of interest, and there is no information about the class labels in the scene
to be detected. Moreover, phenomena such as the complexity of the
background and the inherent variation of the spectra of the same sub-
stance pose difficulties for HTD The main challenge of HTD is to accu-
rately identify and localize targets from complex backgrounds based on
a priori target spectrum and to be able to suppress the background
effectively.

To utilize the spectral characteristics of materials to detect targets of
interest in HSIs, many HTD methods have been developed in the past
decades. The Spectral Angle Mapper (SAM) [14] calculates the spectral
angle between a prior target spectrum and each pixel within the HSI.
The Spectral Information Divergence (SID) [15] detects targets by
calculating the probabilistic difference between two spectral pixel vec-
tors. These are the simple and straightforward target detectors. The
method based on Constraint Energy Minimization (CEM) [16]
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minimizes the impact of background by constructing the finite impulse
response (FIR) filters and constraining the features of target to a specific
gain, showing excellent performance in hyperspectral target detection.
Subsequently, there have been some variant methods of CEM. The hi-
erarchical CEM (hCEM) [17] method adopts a hierarchical structure of
different layers of CEM detectors, maintaining target spectra and sup-
pressing background spectra through the process of layer-by-layer
filtering, where gradually improving the detection performance. Adap-
tive coherent\cosine estimator (ACE) [18,19] is a probabilistic statistics-
based HTD method that assumes that the background conforms to a
multivariate Gaussian distribution and detects the target adaptively
from the background based on the covariance matrix of the HSI. And a
method similar to ACE is Adaptive Matched Filter (AMF) detector [20],
which also is a probabilistic statistics-based HTD method. Subspace-
based hyperspectral target detection algorithms have also been pro-
posed, such as the Orthogonal Subspace Projection (OSP) detector [21]
proposed by Chein-I Chang. OSP is an HTD method based on subspace
modeling, which detects targets by projecting the pixel spectra into
orthogonal subspaces of individual background end-elements to sup-
press the interference of the background. However, the above methods
ideally define the spectral features of target of interest with a single
target spectrum or the target subspace, which may not always align with
the complexity of real-world objects and result in the poor detection
performance. The above HTD methods are extended to corresponding
kernel-based nonlinear versions to utilize the nonlinear relationship
between spectral bands such as kernel-CEM (KCEM) [22], kernel
adaptive coherence estimation (KACE) [23], and kernel OSP (KOSP)
[24]. Kernel-based HTD methods implicitly map the data into a high-
dimensional kernel feature space by using the corresponding kernel
function to make the data well separated. However, kernel-based HTD
methods rely on the assumption that the transformation into the kernel
feature space becomes linearly separable. Representation-based HTD
methods have emerged to avoid making any explicit assumptions about
the statistical distribution [25], such as the sparse representation-based
target detector (STD) [26], combined sparse and co-sparse representa-
tion-based HTDmethod (CSCR) [27], and decomposition model for HTD
based on background dictionary learning (DM-BDL) [28]. Although the
representation-based methods can achieve good detection results,
obtaining a pure background dictionary is difficult due to factors such as
noise, and the optimal number of dictionary atoms may differ for
different data [29], requiring human experience to be set, significantly
limiting its ability to adapt to different scenarios.

The concept of deep learning stems from the exploration of artificial
neural networks, initially proposed by Hinton et al. in 2006. This
methodology integrates low-level features to construct more abstract,
high-level features, thereby uncovering distributed representations of
data features. The significant advancements achieved by deep learning-
based network models grounded in the realm of RGB image processing
have introduced the novel research avenues for hyperspectral image
processing, including classification [30], band selection [31], images
fusion [32], and target detection [33,34]. However, challenges in la-
beling hyperspectral data, scarcity of labeled data, and the imbalance of
positive and negative samples, have hindered the progress in deep
learning-based hyperspectral target detection. Several deep learning-
based hyperspectral target detection methods have been proposed,
demonstrating the potential of this technique. Some researchers have
approached the problem from the perspective of transfer learning in the
hope of overcoming the inability to train detectors in a supervised
learning manner due to the scarcity of prior information, such as the
convolutional neural network-based HTD (CNND) method [35], the
meta-learning and Siamese network-based HTD (MLSN) method [36],
and the transfer-learning-based HSI spectral–spatial joint target detec-
tion method [37]. However, using the idea of transfer learning to
transfer the model knowledge learned on a dataset with known label
information in the source domain to the target domain to be detected
scene will be limited by the adaptability of the model knowledge to the

detection scene, resulting in a poor target detection performance. In
addition to employing transfer learning, some researchers have helped
train models by synthetically expanding target and background samples.
In this regard, the HTD-Net method in [38] adopts a U-net structure to
design a modified auto-encoder to generate target signatures, and then
find background samples based on linear prediction. Finally, the known
target pixels are paired with both target and background pixels to
augment the training samples. The two-stream CNN-based detector [39]
finds enough background pixels by hybrid sparse representation and
classification-based pixel selection, and then blends a prior target
spectrum with some typical background pixels to generate sufficient
target samples. Then, the generated target and background samples are,
respectively, constructed with the prior target spectrum into positive
and negative training samples to be expended and sent to the two-stream
CNN to learn the spectral difference discrimination ability. In contrast to
utilizing spectral differences from pixel pairs as training samples, this
method preserves discriminative spectral features to a greater extent.
While these methods achieve better detection performance, they rely
heavily on supervised learning and data augmentation to address the
challenges posed by insufficient labeled data and sample imbalance.
Unsupervised learning methods, such as the generative adversarial
network-based approach proposed by Xie et al [40], map the original
hyperspectral data into a deep spectral feature space, ultimately per-
forming target detection on this feature space. However, assuming
normal data distribution limits their effectiveness in real-world sce-
narios. To fully exploit the global spectral features, a Siamese trans-
former target detector (STTD) [41] uses the transformer encoder to
extract spectral features, and then the paired features were subtracted
and fed into MLP for the final similarity scores. Additionally, the band
selection-based [42] and the robust signature-based [43] hyperspectral
target detection methods have also shown competitive performance.
While these above-mentioned deep learning-based hyperspectral target
detection methods exploit spectral sequence data’s potential, achieving
better detection performance and robustness than traditional methods,
they still face several challenges:

1. Most deep learning models for hyperspectral target detection are
adapted from the state-of-the-art natural image processing models.
The distinctiveness of the spectral sequence data for HSI often leads
to substituting traditional two-dimensional convolution for spatial
information extraction with one-dimensional convolution for spec-
tral information extraction. This adaptation results in a one-
dimensional network model optimized for the spectral feature
extraction. While this substitution via one-dimensional convolution
has yielded promising detection performance for HTD, exploring the
effectiveness of two-dimensional convolution for spectral feature
extraction remains an open question.

2. Current methods primarily mine the spectral sequence data of one-
dimensional vectors to acquire the higher-order features corre-
sponding to spectral pixels for target detection. However, spectral
sequence data, despite being continuous spectral curves, essentially
constitutes a one-dimensional vector type of data, with a limited
amount of information to be extracted compared with two-
dimensional matrix-type data.

3. As is widely known, hyperspectral images contain a wealth of in-
formation in the spectral dimension with numerous highly correlated
spectral bands. This, in turn, results in the presence of information
redundancy within bands. Given the inability to fully address the
redundancy, whether it is feasible to harness this redundancy to
enhance the detection performance of hyperspectral target detection.

To address these challenges, this paper proposes an atrous
convolution-based hyperspectral target detection method using Gra-
mian Angular Field (GAF). Leveraging GAF, this method explores the
multidimensional relationship among spectral bands, transforming
spectral sequence data of one-dimensional vectors into band relation
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map of two-dimensional matrices for target detection. Specifically,
target spectral data is firstly obtained through modulation with a prior
target spectrum and Gaussian white noise. Subsequently, GAF is
employed to generate band relation maps of target samples, where the
band relation maps of pure background samples are obtained by GAF
and SAM detector to complete the preparation of training data. An
atrous convolution-based spectral feature extraction network is
designed to extract the spectral band features from the band relation
maps, enabling a more accurate target detection with more feature in-
formation. Finally, the proposed method incorporates exponential
function and normalization operation to effectively suppress back-
ground interference. Comparative experiments with state-of-the-art
detection methods on four real-world hyperspectral datasets validate
the feasibility and effectiveness of the proposed method. The main
contributions of this paper are summarized as follows:

• The proposed approach addresses the limitations of one-dimensional
vectors of spectral sequence data by mining multidimensional re-
lationships between spectral bands through using GAF, transforming
one-dimensional vector data of spectral sequence data into two-
dimensional matrix data of band relation map. This approach en-
ables hyperspectral target detection without being limited to one-
dimensional spectral dimensions, and converts the redundancy of
information between spectral bands into a natural advantage for
improving detection performance.

• Given that the data for HTD is transformed from one-dimensional
vector data to two-dimensional matrix data, it is imperative that
the corresponding feature extraction network should also be transi-
tioned from one-dimensional to two-dimensional network models.
Consequently, a spectral feature extraction network based on atrous
convolution is proposed to extract features of spectral bands relation
maps for target detection.

2. Proposed method

The proposed model, as illustrated in Fig. 1, is divided into three
primary steps: training samples preparation, atrous convolution neural
network training, and target detection with background suppression.
The training samples preparation is a crucial step and is mainly achieved
by GAF and Gaussian white noise modulation. Once the training samples
are prepared, the next step is to train the atrous convolution neural
network, where the obtained target spectral augmentation samples and
pure background spectral samples are fed into the atrous convolution

neural network to extract the spectral features to achieve target detec-
tion. The final step involves detecting targets using the trained network
and suppressing the background to improve detection accuracy, where
the exponential function and normalization operation are used to ach-
ieve background suppression and obtain the final detection results. The
following sub-sections describes the key techniques of the proposed
approach.

2.1. Gramian Angular field

The Gramian Angular Field (GAF) [44] is a method to represent the
one-dimensional sequence data as polar coordinates, which are then
used to generate the two-dimensional matrix data. For spectral pixel
vector, GAF transforms the one-dimensional spectral sequence into two-
dimensional band relation maps, thus to maximally describe the multi-
dimensional relationship between different spectral bands.

As shown in Fig. 2, the fundamental principle of GAF is to transform
one-dimensional sequence data from the Cartesian coordinate system to
the polar coordinate system. This is achieved through the unique defi-
nition of the inner product, which allows the information characterizing
the correlation between the spectral bands to be obtained through the
trigonometric sum/difference. The information is then tiled into the
matrix from the upper left to the lower right in order, generating the
GASF and GADF two types of matrix data. And this paper mainly uses the
GADF matrix data.

2.1.1. Transformation process
Assume the one-dimensional spectral sequence data X ¼ [x1, x2,⋯,

xN] contains N spectral sequence vectors. Before mapping to the Carte-
sian coordinate system, it is necessary to scale the original data xi to the
range of [-1, 1] using Eq. (1):

x̃i =
xi − max(X) + xi − min(X)

max(X) − min(X)
(1)

The GAF matrix is defined by Eq. (2). The inner product between
different vectors can be used to quantify the degree of correlation be-
tween them, while the angle between vectors indicates the strength of
correlation between different vectors.

Fig. 1. Flowchart of the proposed method.
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G = XTX =

⎡

⎢
⎢
⎣

< x1, x1 > ⋅⋅⋅ < x1, xn >

< x2, x1 > ⋅⋅⋅ < x2, xn >

⋮

< xn, x1 > ⋅⋅⋅ < xn, xn >

⎤

⎥
⎥
⎦ (2)

where G is the GAF matrix and <⋅> is the inner product operation.
Since the one-dimensional spectral sequence data are not inherently

vectors, it is necessary to use the polar coordinate transformation to
transform the spectral sequence data into vectors. The transformation
formula is shown in Eq. (3).

ϕ = arccos(x̃i), − 1 ≤ x̃i ≤ 1

ri =
i
N
, i = 1, 2, ⋅⋅⋅,N

(3)

This mapping equation has two crucial properties. Firstly, it enables
two-way mapping in accordance with the trigonometric function. This is
demonstrated by the fact that cos(ϕ) is monotonically decreasing when
ϕ ∈ [0, π], thereby ensuring the uniqueness of its mapping to polar co-
ordinates. Furthermore, the inverse mapping has uniqueness as well.
Secondly, in polar coordinates, the absolute relationship between
different bands is maintained. Consequently, GAF has defined two
distinct forms of inner products with penalty terms designed to mitigate
the impact of Gaussian noise. These are defined in Equations (4)-(5):

< xi, xj >= cos(ϕi + ϕj) (4)

< xi, xj >= sin(ϕi − ϕj) (5)

For the two different forms of definition of the inner product, by
obtaining the sum or difference between each vector and presenting its
correlation using a matrix, it is known as the GASF and GADF matrix
data. The mathematical expressions for generating the GASF and GADF
matrices based on the estimated values of the polar co-ordinates of each
input are shown in Eqs. (6)–(7):

GGASF =

⎡

⎢
⎢
⎣

cos(ϕ1 + ϕ1)⋅⋅⋅cos(ϕ1 + ϕn)

cos(ϕ2 + ϕ1)⋅⋅⋅cos(ϕ2 + ϕn)

⋮

cos(ϕn + ϕ1)⋅⋅⋅cos(ϕn + ϕn)

⎤

⎥
⎥
⎦ (6)

GGADF =

⎡

⎢
⎢
⎣

sin(ϕ1 − ϕ1)⋅⋅⋅sin(ϕ1 − ϕn)

sin(ϕ2 − ϕ1)⋅⋅⋅sin(ϕ2 − ϕn)

⋮

sin(ϕn − ϕ1)⋅⋅⋅sin(ϕn − ϕn)

⎤

⎥
⎥
⎦ (7)

2.1.2. Application in hyperspectral target detection
In order to enhance the performance of HTD, it is crucial to utilize the

relational features between different bands of pixel spectra. GAF ach-
ieves this by converting pixel spectra into spectral band relationship
maps. These maps allow for a more comprehensive analysis of the
spectral data, capturing the intricate relationships between spectral

bands and improving the accuracy of target detection.
By leveraging GAF, the proposed method effectively transforms one-

dimensional spectral sequence data into two-dimensional matrices,
facilitating the extraction of valuable spectral features for hyperspectral
target detection. This transformation is a key component of the atrous
convolution-based network, enabling more accurate and robust target
detection.

2.2. Training data preparation

Deep learning-based hyperspectral target detection often faces the
challenge of insufficient labeled trainig data, apart from the priori target
spectrum. To solve this ubiquitous problem, this section presents a two-
step strategy for the training data preparation: target sample augmen-
tation and GAF-based pure background samples acquisition.

2.2.1. Target sample augmentation
As shown in Fig. 3, to obtain a sufficient number of target samples,

the known priori target spectra are modulated by Gaussian white noise
with varying signal-to-noise ratios (SNRs).

€This approach simulates aberrant target spectra caused by different
environmental factors. From the perspective of global information, it
can be observed that the target samples obtained by modulation strictly
obey the distribution of the target spectra. And the local positions of
target samples exhibit varying degrees of variation. It is evident that this
strategy of spectral data augmentation has two advantages. On the one
hand, it avoids the situation in which there is a large spectrum shape
difference between the image pixels used to expand the target samples
and the prior target spectrum. On the other hand, it effectively simulates
the differences between the target spectra while preserving the prior
target spectral information.

2.2.2. GAF-based pure background samples acquisition
As shown in Fig. 4, To address the problem of impure background

samples in spectral feature extraction networks, we extract pure back-
ground samples using a priori target spectrum, SAM detector and GAF.

Specifically, it is assumed that the hyperspectral image
X∈W×H×lcontains l bands, and the corresponding spectral sequence data
is X̂∈WH×l. The priori target spectrum is denoted as d ∈ R1×l. With GAF,
the priori target spectrum d and the spectral sequence data X̂ are
transformed into the corresponding two-dimensional matrix data
dGADF∈

1×l×l and XGADF∈
WH×l×l, respectively. Then, each feature map of

XGADF and dGADF are fed into SAM detector to get the correlation coef-
ficient of the priori target spectrum and each spectral pixel of the
hyperspectral image. And these correlation coefficients form a correla-
tion map w of the spectral pixels of the hyperspectral image with the
priori target spectrum. Finally, it is necessary to scale w to w̃ with the
range of [-1, 1] by Eq. (1). The values of w̃ are sorted from smallest to
largest, and the spectral pixels corresponding to the first 20–30 % of the
sorted values are taken as the pure background samples.

Fig. 2. Flowchart of the Gramian Angular Field representation.
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2.3. Atrous convolution neural network training

Once the one-dimensional spectral sequence has been converted into
two-dimensional band relation maps, it is necessary to transit the
spectral feature extraction network from a one-dimensional convolu-
tion-based model to a two-dimensional convolution-based model.
Consequently, a large number of high-performance feature extraction
networks in the domain of natural image processing can be readily
transferred to deep learning-based hyperspectral target detection
methods. However, models that concentrate on the extraction of spatial
information about target contours are also not particularly suitable for
HTD. For instance, the VGG16 network results in a significant reduction
for feature map size due to the utilization of numerous MaxPooling
layers for down sampling the feature maps. And it results in the loss of
some detailed information from the feature maps, which is irreducible to
the lost information and targets. This can ultimately lead to unsatis-
factory performance for HTD, which is essentially a binary classification
problem. At the same time, the removal of the MaxPooling layer in a
straightforward and unsophisticated way will result in the feature maps
corresponding to the sensory fields of the original maps becoming much
smaller, which will consequently impede the convolution from
acquiring the deeper information. Therefore, considering that the two-
dimensional image converted from the one-dimensional spectral
sequence mainly describes the relationship between spectral bands
rather than the spatial information of target contours, atrous convolu-
tion [45] is introduced to solve the above problem.

2.3.1. Atrous convolution
The atrous convolution (dilated convolution) was originally devel-

oped in the algorithm of wavelet decomposition [46]. The main idea of
atrous convolution is to insert “holes (zeros)” between pixels in con-
volutional kernels to increase the resolution, thus enabling dense feature
extraction in deep CNNs. Specifically, the atrous convolution is a special
two-dimensional convolution that obtains the relatively large receptive
field without reducing the image size, and its main advantage is that it
allows flexible resizing of the receptive field to capture the multi-scale
information and improve the performance of target classification and
semantic segmentation. The two-dimensional atrous convolution oper-
ator can be defined in Eq. (8):

gi,j(xGADF) =
∑

θi,jk,r ∗ xGADF (8)

where gi,j is the convolution operation of the feature map, ∗ denotes the
convolution operator, xGADF is the feature map and θi,jk,r is the atrous
convolution kernel of size k and dilation rate r ∈ Z+. For the atrous
convolution, the convolution kernel size k is increased to k+(k-1)⋅(r-1),
and when r = 1, it is equivalent to the two-dimensional standard
convolution. The feeler field of a standard convolution is related to the
convolution kernel size and step size of all convolutional layers pre-
ceding that layer in the network. Its feeler field grows linearly. In
contrast, the feeler field of the atrous convolution is (2r+1-1)×(2r+1-1), a
cascade of the atrous convolutions results in exponential growth of the
feeler field, such that each convolutional output contains more
information.

However, according to the description in [47], a fundamental issue
arises in the dilated convolution, which is identified as “gridding,” As
shown in Fig. 5. As zeros are padded between two pixels in the con-
volutional kernel, the receptive field of this kernel only covers an area

Fig. 3. Flowchart of the target sample augmentation.

Fig. 4. Flowchart of the GAF-based pure background samples Acquisition.
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with checkerboard patterns (only locations with non-zero values are
sampled), resulting in the loss of some neighboring information. The
issue becomes more pronounced as the rate of dilation increases,
particularly in higher layers where the receptive field is extensive. The
convolutional kernel becomes insufficiently dense to encompass local
information, as the non-zero values are too widely dispersed. Informa-
tion that contributes to a fixed pixel is always derived from the pre-
defined gridding pattern, which results in the loss of a significant portion
of information. Therefore, Wang et al. proposed a criterion called HDC to
solve the problem of “gridding.” Specifically, the goal of HDC is to
ensure that the final size of the RF of a series of convolutional operations
fully encompasses a square region without any holes or missing edges.
The “maximum distance between two nonzero values” is defined in Eq.
(9):

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (9)

whereMn= rn. The goal is to letM2 ≤ K. For example, for kernel size
K = 3, and r = [1,2,5] pattern works as M2 = 2; however, r = [1,2,9]
pattern does not work as M2 = 2. Thus, for the HDC criterion, the
assignment of dilation rate follows a sawtooth wave-like heuristic. This
involves the grouping of several layers together to form the “rising edge”

of the wave, which has an increasing dilation rate. The next group then
repeats the same pattern. To illustrate, for all layers with a dilation rate
of r = 2, three subsequent layers are grouped together and their dilation
rates are altered to 1, 2, and 3, respectively. This approach enables the
top layer to access information from a more extensive range of pixels
within the same region as the original configuration.

Another benefit of HDC is that it can use arbitrary dilation rates
through the process, thus naturally enlarging the receptive fields of the
network without adding extra modules, which is important for recog-
nizing objects that are relatively big. One important thing to note,
however, is that the dilation rate within a group should not have a
common factor relationship (like 2,4,8, etc.), otherwise the gridding
problem will still hold for the top layer.

2.3.2. Atrous convolution neural network
Following the acquisition of two-dimensional band relation maps of

target spectral augmentation samples and pure background samples,
spectral feature extraction is conducted utilizing an atrous convolutional
neural network.

The network is a feed-forward network, which encompasses two-
dimensional standard convolutions, atrous convolutions, fully con-

Fig. 5. The schematic diagram of “gridding”.
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nected layers, and activation function. It can extract high-level features
between spectral bands through connections between neighboring layer
neurons. As shown in Fig. 6, the mainly network includes 11 learnable
two-dimensional convolutional layers. In the designed framework, the
atrous convolution layers, namely C1, C2, C3, C4, C5, C6, C7, C8 and C9,
are configured with a stride of 1, while the two-dimensional standard
convolution layers P1, P2 and P3 replace the MaxPooling layer to better
maintain the information between spectral bands and prevent the loss of
important information. The convolution kernel size for the aforemen-
tioned 10 convolutional layers is set to 3 × 3, and the final learnable
two-dimensional convolutional layer is a 1 × 1 two-dimensional stan-
dard convolutional layer. As shown in Fig. 6, it is worth noting that in
order to avoid the problem of “gridding”, we combine C1, C2, C3, C4,
C5, C6, and C7, C8, C9 into 3 atrous convolution block with different
dilation rates, respectively. For each atrous convolution block, the
dilation rates of the first, middle and last layers are 1, 2 and 3 respec-
tively, thus better following the HDC. The sigmoid activation function is
served as the final layer of network to produce an output representation
in terms of scores (or labels), deriving the probability that a given pixel
belongs to target. Consequently, the optimization function employed for
target detection is the Binary Cross Entropy (BCE), as expressed in Eq.
(10):

LossBCE = −
1
B
∑B

i=1
[yi⋅logfi + (1 − yi)⋅log(1 − fi) ] (10)

2.4. Target detection & background suppression

After training the atrous convolution neural network, each spectral
pixel of the hyperspectral image is converted into a two-dimensional
relationship map by GAF, which is then fed into the atrous convolu-
tion neural network to obtain the spectral detection result. This process
utilizes the spectral information for target detection. This is followed by
a further movement of the value of the background pixels away from the
value of the target pixels by an exponential function and normalization
operation, with the purpose of background suppression. The background
suppression is achieved through the application of exponential function
and normalization operation. The process can be formalized in Eq. (11):

S = αB (11)

where B is the spectral detection result, S is the final detection result,
and α is positive parameter for adjusting the background suppression
performance, respectively.

3. Results and discussion

In this section, a comprehensive set of experiments is conducted on
four real hyperspectral datasets to validate the effectiveness of the
proposed method in terms of detection performance.

3.1. Hyperspectral datasets

SanDiego Dataset: The SanDiego dataset, collected by AVIRIS at the
SanDiego Airport area, CA, USA, exhibits a spatial resolution of 3.5 m
and a spectral resolution of 10 nm. It has 400 × 400 pixels with 224
bands and a wavelength range of 370 ~ 2510 nm. After removing low
SNR and water absorption bands, a total of 189 bands are retained for
detection. In the experiment, a image of size 120 × 120 was captured
from the center of the SanDiego dataset. They are named SanDiego1 and
SanDiego2, respectively. The pseudo-color image and corresponding
ground truth map are shown in Fig. 7(a) and (b). The aircraft in the
image scene is treated as target for detection and contained 58 target
pixels.

Urban Dataset: The Urban dataset was captured by AVIRIS sensors
off the coast of TX, USA, with a spatial resolution of 17.2 m. It has 100 ×

100 pixels, and after removing the low signal-to-noise band the
remaining 204 bands. The pseudo-color image and corresponding
ground truth map are shown in Fig. 8(a) and (b). A total of 67 pixels are
considered as targets for detection.

Beach Dataset: The Beach dataset is captured by the AVIRIS sensor
on Cat Island with a spatial resolution of 17.2 m. In the experiment, the
image of 90 × 90 × 188 size is obtained after removing the noise band.
The pseudo-color image and corresponding ground truth map are shown
in Fig. 9(a) and (b), including 19 anomaly points.

HYDICE Dataset: The HYDICE dataset is collected by HYDICE sen-
sors at the urban area in California, USA, with the spectral resolution is
10 m. The whole image has a total of 307× 307 pixels with a total of 210
bands, and the wavelength is from 400 nm to 2500 nm. In the experi-
ment, we remove the band affected by dense water vapor and atmo-
sphere, and intercept the scene with size of 80 × 100 × 175 for
detection. Its pseudo-color image and corresponding ground truth map
are shown in Fig. 10(a) and (b), including 21 target pixels of the types of
roofs and cars.

3.2. Evaluation Criteria

To evaluate the performance of the proposed method in comparison
with the state-of-the-art methods, quantitative analysis is performed
using the receiver operating characteristic curve (ROC) and its area

Fig. 6. The framework of atrous convolution neural network.
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Fig. 7. Detection maps for the SanDiego dataset. (a) Pseudo-color image (b) Ground truth (c) CEM (d) ACE (e) OSP (f) CSCR (g) DM-BDL (h) CNND (i) BLTSC (j)
STTD (k) SCLHTD (l) Proposed.

Fig. 8. Detection maps for the Urban dataset. (a) Pseudo-color image (b) Ground truth (c) CEM (d) ACE (e) OSP (f) CSCR (g) DM-BDL (h) CNND (i) BLTSC (j) STTD
(k) SCLHTD (l) Proposed.

Fig. 9. Detection maps for the Beach dataset. (a) Pseudo-color image (b) Ground truth (c) CEM (d) ACE (e) OSP (f) CSCR (g) DM-BDL (h) CNND (i) BLTSC (j) STTD
(k) SCLHTD (l) Proposed.
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under the curve (AUC) [48,49]. The ROC curve has been widely used as
an evaluation tool for the target detection in HSIs. The ROC curve ob-
tains different detection probability PD and false alarm probability PF by
changing the threshold value τ. Detection probability PD and false alarm
probability PF can be calculated by Eqs. (12)–(13), respectively:

PD(τ) =
nD,τ

nD,τ + nFN,τ
(12)

PF(τ) =
nF,τ

nF,τ + nTN,τ
(13)

where nD, τ, nFN, τ, nF, τ and nTN, τ represent the number of correctly
detected target pixels, the number of pixels that are targets but not
detected as targets, the number of background pixels that are detected as
target pixels, and the number of correctly detected background pixels
below the threshold, respectively.

Due to the interaction between the detection probability PD and the
false alarm probability PF, the ROC curve (PD, PF) with a higher AUC
value does not necessarily mean that the detector has a good background
suppression ability. Therefore, in order to evaluate the detector perfor-
mance more accurately, this paper uses 3D ROC curve [48] as the
evaluation standard, and three 2D ROC curves (PD, PF), (PD, τ) and (PF, τ)
are used to evaluate the detector’s effectiveness, detection ability and
background suppression ability, respectively.

The AUC is the value of area under the ROC curve, used to quanti-
tatively evaluate the performance of the detector. For the 2D ROC curve
(PD, PF), AUC (PD, PF) value between 0.5 and 1 indicates that the detector
is effective, with closer values to 1 signifying better performance. AUC
(PD, τ) is the area under the curve of the 2D ROC curve (PD, τ), quanti-
tatively representing the target detection capability of the detector, with
the larger values indicating stronger detection ability. While AUC (PF, τ)
value is the area under the curve of the 2D ROC curve (PF, τ), measuring
the ability of the background suppression, with smaller values indicating
better suppression of the background. And the background suppression
capability quantitative index AUCBS, with a range of [-1,1], which
combines the probability of detection and the probability of false alarm
to thoroughly measure the background suppression capability of the
detector, is defined as:

AUCBS = AUC(PD,PF) − AUC(PF, τ) (14)

The larger value of AUCBS indicate the better background suppres-
sion for detectors. Besides, a new quantitative detection index designed
in [48] takes the three AUC values as a whole to measure the total
performance, named as AUCOD, with a range of [-1,2], which is defined
as:

AUCOD = AUC(PD, PF)+AUC(PD, τ) − AUC(PF, τ) (15)

3.3. Experimental Setup

To evaluate the performance of the proposed method, several exist-
ing state-of-the-art detection methods are compared, including five
tradition methods and four deep learning-based methods. The tradi-
tional methods include the classical detection method CEM, the statis-
tical distribution model-based detection methods ACE, the subspace
model-based detection method OSP, the representation-based detec-
tion methods CSCR and decomposition model with background dictio-
nary learning (DM-BDL). The deep learning-based methods include the
transfer learning-based detection method (CNND), the background
learning-basedmethod (BLTSC), the siamese transformer network-based
detection method (STTD) and the self-supervised spectral-level
contrastive learning-based method (SCLHTD).

CEM and ACE do not have any parameters that need to be set arti-
ficially. For CSCR, the outer and inner windows sizes are (7, 3), (11, 3),
(11, 3), and (3, 11) for the Sandiego, Urban, Beach, and HYDICE data-
sets, respectively. The regularization parameters λ1 and λ2 are set to 10− 1

and 10− 2 for all datasets in the experiment. The decay parameter in the
DM-BDL detector was set to 0.982 for all datasets in the experiment, and
the other parameters followed the settings in the original paper. For the
transfer learning-based CNND detector, the training set is constructed by
subtracting the spectra of similar pixels and subtracting the spectra of
different classes of pixels using the dataset with known labels captured
by the corresponding sensor when training the deep CNN. For all data-
sets in the experiment, the learning rate, batch size, and epoch of the
CNNDmethod during training are set to 10− 3, 256, and 50, respectively.
For the background learning-based method BLTSC method, it only uses
the background training samples, the coarse detection is performed
using the classical CEM method to grain the sufficient background
training data. It uses the learning rate and epoch set to 1e-4 and 500,
during training for four real datasets in this experiment, respectively.
For the Siamese transformer network-based detection method STTD, the
threshold of extracting background pixels on abundance maps is set to
0.75. The threshold of the pre-detection filter and the spectral-angle-
based filter are set to 0.975 and 0.375, respectively. For all datasets in
the experiment, the learning rate and batch size during training are set
to 10− 4 and 100, respectively. For the SCLHTD method, the total pa-
rameters follow the settings in the original paper for all four real datasets
in this experiment.

The proposed method is broadly divided into three steps: training
data preparation, atrous convolution neural network training, and target
detection with background suppression. The acquisition of target sam-
ples for the training data is mainly realized by GAF and Gaussian white
noise modulation, which results in the band relation maps correspond-
ing to target spectral augmentation samples. For the acquisition of pure
background spectra, all the spectral pixels of the hyperspectral image

Fig. 10. Detection maps for the HYDICE dataset. (a) Pseudo-color image (b) Ground truth (c) CEM (d) ACE (e) OSP (f) CSCR (g) DM-BDL (h) CNND (i) BLTSC (j)
STTD (k) SCLHTD (l) Proposed.
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are converted into the corresponding band relation maps by the GAF,
and then the pure background samples are obtained by using the SAM
method and the characteristics of the data distribution with a small
threshold. During the training of the atrous convolution neural network,
the learning rate of all four HSI datasets are set to 10-4. The epoch and
the batch size are set to (100, 256), (100, 256), (150, 256) and (150,
256) for the Sandiego, Urban, Beach and HYDICE datasets, respectively.
Regarding the background suppression process for all datasets in the
experiment, the exponential function set α to 2e3, 4e3, 26e1, and 3e1 for
Sandiego, Urban, Beach, and HYDICE datasets, respectively.

The experimental hardware environment includes an AMD Ryzen
Threadripper 3990X 64-core CPU and Quadro RTX 8000 48 GB GPU.
The implementation of both the proposedmethod and the deep learning-
based method is carried out using Python 3.8.0, PyTorch 1.12, and
MATLAB R2022a. And the other traditional comparison methods are
carried out using MATLAB R2022a.

3.4. Results and analysis comparison by different methods

3.4.1. Subjective Assessment of detection results
As described in section 3.3.2, nine state-of-the-art detection methods

are used for comparison in the Experiments to verify the effectiveness of
the proposed method. Figs. 7-10 show the detection maps by the above
methods and the proposed method for the SanDiego, Urban, Beach, and
HYDICE datasets.

It can be seen from the detection maps that CEM, ACE, CNND and
BLTSC miss many target pixels, and they have very low tolerance for
target spectral variations. This is due to the strong non-Gaussianity and
nonlinearity of the real scenes for HSIs, where leading to a decrease in
target detection accuracy of CEM and ACE. OSP and CSCR can detect the
most of targets, but there is poor background suppression and small
separation between target and background, where resulting in the
inability to visually identify targets, and the detection performance
decreases when the background of the scene for detecting becomes more
complex. Compared with CSCR and OSP, the target for the detection
map of DM-BDL is detectable and has relatively good background sup-
pression, but it requires more prior target spectra to improve the
detection accuracy. The CNND method expands the training samples for
training by pairing pixels of the similarity class and pairing pixels of
dissimilarity classes based on known labelled classified datasets of the
corresponding sensor for each dataset, which enables the deep CNN to
learn spectral difference for target detection. Since the spectral pairing is
performed by the difference of the pixels, it leads to the loss of detailed
spectral information of the original image, and the transfer knowledge is
not so well adapted to the detection task in the target domain, which
makes many target pixels are not detected. The STTD and SCLHTD
method detect most of targets, but also have higher false detection rates
and poor background suppression for datasets with more complex
background. And the performance of SCLHTD is limited by the quality of
the prior target spectra used for detecting. The proposed method shows
excellent detection performance with both high target detection accu-
racy, good background suppression, and visually obvious identification
of target in the detection maps obtained on four real datasets, showing

the best performance among all comparable methods.

3.4.2. Quantitative Assessment of detection results
Subjective evaluation of the detection maps visually has limitations,

and to quantitatively evaluate the performance of the proposed method,
3-D ROC curves and their corresponding 2-D ROC curves (PD, PF), (PD, τ),
and (PF, τ) with the AUCs of (PD, PF), (PD, τ), and (PF, τ) are used for
quantitative evaluation. The 2-D ROC curve of (PD, PF) is used to
demonstrate the effectiveness of different methods, as shown in
Figs. 11–14(b). For the four real HSI datasets in the experiment, the red
curve is the ROC curve of the proposed method, which outperforms the
curves of other comparison methods. The 2-D ROC curve of (PD, τ) is
used to evaluate the preservation ability of the method for the target. As
shown in Figs. 11–14 (c), the proposed method outperforms other
methods for all datasets. For the 2-D ROC curve of (PF, τ), which eval-
uates the background suppression ability, as shown in Figs. 11–14 (d),
the proposed method has a significantly better background suppression
ability than other methods, and it shows the strong background sup-
pression ability for all datasets.

The specific values of AUC (PD, PF), AUC (PD, τ), AUC (PF, τ), AUCBS
and AUCOD for different methods on the SanDiego, Urban, Beach, and
HYDICE datasets are given in Tables 1-4. The optimal results are shown
in bold, and the suboptimal results are underlined. For the SanDiego
dataset, AUC (PD, PF), AUC (PD, τ), AUC (PF, τ), and AUCBS are the
optimal results. Therefore, the proposed method has the optimal inte-
grated detection ability on the SanDiego dataset. AUCBS is a more
reasonable indicator of the background suppression capacity for the
method. For the Urban dataset, AUC (PD, PF), AUC (PD, τ), AUC (PF, τ),
and AUCBS are also the optimal results. The proposed method has the
better integrated detection ability on the Urban dataset. For Beach
dataset, the proposed method also performs optimally on all evaluation
indicators. For HYDICE dataset, AUC (PD, PF), AUC (PD, τ), AUC (PF, τ),
and AUCBS are also the optimal results. And AUC (PF, τ) is far superior to
other methods. Therefore, the proposed method has the optimal inte-
grated detection ability on the HYDICE dataset.

3.4.3. Target-background separability comparison
To evaluate the effectiveness of the proposed method in separating

target from the background, target-background separability boxplot
[50] is used to show the separation degree of target and background by
different methods.

Fig. 15 shows the target-background separability boxplot for nine
comparison methods and the proposed method on the four real datasets
(SanDiego, Urban, Beach, and HYDICE). The boxes in the target-
background separability boxplot represent pixels with statistically
distributed values, removing the highest and lowest 10 % of data in the
target and background. The red box and green box represent the target
and background, respectively. The horizontal line in the middle of each
box indicates the median value, and the upper and lower horizontal lines
indicate the maximum and minimum values. The proposed method
displays good background suppression performance for all datasets in
the experiment and can better separate the target from the background.
The excellent target-background separability indicates that the

Fig. 11. ROC curves for SanDiego dataset. (a) 3D ROC curve. (b) 2D ROC curve of (PD,PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC curve of (PF , τ).
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enhanced spectral information present in two-dimensional data enables
the model to a more accurately distinction between target and back-
ground spectra. By utilizing the target-background separability boxplot,
we can visually and statistically assess the performance of different
methods, providing clear evidence of the superior capability of the
proposed method in accurately separating targets from the background.

3.5. Ablation study of the proposed model

3.5.1. Ablation experiments of GASF and GADF
With GAF, one-dimensional spectral sequence data can be trans-

formed into two distinct two-dimensional data: GASF and GADF. And
this paper utilizes GADF as the two-dimensional data input to the
spectral feature extraction network. To investigate the effect of GASF
and GADF on the detection accuracy of HTD, GASF and GADF are used
as the inputs for training and detection of the spectral feature extraction
network, respectively. Table 5 illustrates the effect of GASF and GADF
on the detection accuracy of HTD, and the AUC (PD, PF) values in Table 5
demonstrate the effectiveness of methods.

It can be seen from Table 5 that the detection accuracy of the method
using GADF is almost identical for the method using GASF on all four
real datasets. It demonstrates that the detection accuracy of the method
is independent of the form in which the two-dimensional data is ac-
quired, and is related to the data type of the one-dimensional and two-
dimensional data. This is because the one-dimensional spectral sequence

data contains limited spectral feature information.

3.5.2. Ablation experiments of atrous convolution
For the proposed method, an ablation study of the traditional applied

two-dimensional standard and atrous convolution is conducted to verify
whether the type of two-dimensional convolution used by the spectral
feature extraction network has any effect on the detection performance.
Considering that the main body of the spectral feature extraction
network is the cascade structure of 3 convolutional blocks, we set up two
sets of experiments, including the network with convolutional block
using standard convolution and the network with convolutional block
using atrous convolution, respectively. For both experiments, all other
settings are kept the same. Table 6 illustrates the effect of standard and
atrous convolution on the detection performance of HTD. The AUC (PD,
PF) values in Table 6 demonstrate the effectiveness of methods, and the
times in Table 6 indicate the time for the spectral feature extraction
network training. The parameters in Table 6 demonstrate the parameter
quantity of two networks, and the FLOPs indicate the floating-point
operations per second of two networks.

As can be seen from Table 6, the AUC (PD, PF) values for the same
dataset are equivalently close, which demonstrates that the detection
accuracy of the method is independent of the type of two-dimensional
convolution. However, it can be seen from Table 6 that the times of
network training are markedly disparate. The time of convolutional
block using atrous convolution is less than the time of convolutional

Fig. 12. ROC curves for Urban dataset. (a) 3D ROC curve. (b) 2D ROC curve of (PD,PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC curve of (PF , τ).

Fig. 13. ROC curves for Beach dataset. (a) 3D ROC curve. (b) 2D ROC curve of (PD,PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC curve of (PF , τ).

Fig. 14. ROC curves for HYDICE dataset. (a) 3D ROC curve. (b) 2D ROC curve of (PD,PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC curve of (PF , τ).
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Fig. 15. Target-background separability boxplots for different datasets. (a) San Diego. (b) Urban. (c) Beach. (d)HYDICE. (The red boxes represent target and the
green boxes represent background.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Accuracy comparison of different methods for SanDiego dataset.

Method AUC (PD, PF) AUC (PD, τ) AUC (PF, τ) AUCBS AUCOD

CEM 0.9616 0.2968 0.0388 0.9228 1.2196
ACE 0.9746 0.1336 0.0045 0.9701 1.1038
OSP 0.8682 0.6052 0.4102 0.4580 1.0632
CSCR 0.9774 0.5298 0.3394 0.6380 1.1678
DM-BDL 0.9653 0.3727 0.0095 0.9558 1.3285
CNND 0.9657 0.1832 0.0007 0.9650 1.1482
BLTSC 0.9551 0.1900 0.0017 0.9534 1.1434
STTD 0.9308 0.7694 0.0435 0.8873 1.6568
SCLHTD 0.9960 0.7079 0.0284 0.9676 1.6755
Proposed 0.9998 0.9787 0.0006 0.9992 1.9779

*Boldface highlights the best results while underline shows the second-best.

Table 2
Accuracy comparison of different methods for Urban dataset.

Method AUC (PD, PF) AUC (PD, τ) AUC (PF, τ) AUCBS AUCOD

CEM 0.9430 0.2082 0.0270 0.9160 1.1242
ACE 0.8505 0.0678 0.0030 0.8475 0.9152
OSP 0.8066 0.4680 0.3368 0.4698 0.9378
CSCR 0.9935 0.5996 0.2224 0.7711 1.3707
DM-BDL 0.9856 0.3846 0.0111 0.9745 1.3592
CNND 0.8556 0.1506 0.0557 0.7999 0.9505
BLTSC 0.9310 0.4066 0.0881 0.8428 1.2494
STTD 0.9907 0.4700 0.0042 0.9865 1.4566
SCLHTD 0.9917 0.5058 0.0039 0.9878 1.4937
Proposed 0.9973 0.6585 0.0029 0.9944 1.6529

*Boldface highlights the best results while underline shows the second-best.

Table 3
Accuracy comparison of different methods for Beach dataset.

Method AUC (PD, PF) AUC (PD, τ) AUC (PF, τ) AUCBS AUCOD

CEM 0.9433 0.2391 0.0141 0.9292 1.1683
ACE 0.8821 0.1040 0.0023 0.8798 0.9838
OSP 0.7864 0.3663 0.2223 0.5641 0.9304
CSCR 0.9832 0.7129 0.1979 0.7852 1.4981
DM-BDL 0.9363 0.3645 0.0039 0.9324 1.2969
CNND 0.9537 0.2419 0.0065 0.9472 1.1891
BLTSC 0.9318 0.2273 0.0116 0.9202 1.1476
STTD 0.9191 0.4537 0.0025 0.9166 1.3703
SCLHTD 0.9978 0.5183 0.0062 0.9915 1.5098
Proposed 0.9992 0.8560 0.0020 0.9972 1.8532

*Boldface highlights the best results while underline shows the second-best.

Table 4
Accuracy comparison of different methods for HYDICE dataset.

Method AUC (PD, PF) AUC (PD, τ) AUC (PF, τ) AUCBS AUCOD

CEM 0.9549 0.3077 0.0306 0.9246 1.2323
ACE 0.9145 0.1945 0.0035 0.9110 1.1055
OSP 0.7617 0.4758 0.3166 0.4451 0.9209
CSCR 0.9661 0.6635 0.4251 0.5410 1.2045
DM-BDL 0.9908 0.6174 0.0848 0.9061 1.5234
CNND 0.7868 0.1023 0.0187 0.7681 0.8704
BLTSC 0.9385 0.1729 0.0016 0.9369 1.1098
STTD 0.8658 0.7277 0.0618 0.8040 1.5318
SCLHTD 0.9637 0.5389 0.0717 0.8920 1.4308
Proposed 0.9999 0.9385 0.0002 0.9997 1.9382

*Boldface highlights the best results while underline shows the second-best.
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block using standard convolution, which is due to the ability of atrous
convolution to flexibly adjust the size of the receptive field to capture
multi-scale information. The shorter time is required for the spectral
feature extraction network with atrous convolution training to conver-
gence. And for the same dataset, the number of network parameters and
FLOPs of standard convolution are higher than those of atrous convo-
lution. Comparing to the standard convolution-based network, this also
proves that atrous convolution-based network requires less training
time.

3.6. Training time consumption

As can be seen from Table 7, for the STTD method, in the self-
attention mechanism of Transformer, when the attention weight of
each position is calculated for the spectral input sequence length n, the
similarity of all positions needs to be calculated in pairs. Then calculate
the attention score, which is O(n2) in computational complexity. This
calculation process requires the dot product of the vectors of each pair of
positions, and the amount of computation increases sharply as the length
of the sequence n increases. At the same time, the multi-head attention
mechanism is one of the core components of Transformer. It consists of
self-attention calculations for multiple heads (such as h heads). For each
head, the computational process of the self-attention mechanism
described above needs to be carried out. Although the computation of
each head can be performed in parallel, the total computation amount is
still h times that of a single self-attention mechanism. Therefore, more
parameters mean that more computation is required to update these
parameters during training and inference, both forward and back-
propagation, thus increasing the time cost. In addition, the STTDmethod
uses the Siamese network structure, and the computational complexity
of the model will be doubled. Therefore, the training time of the pro-
posed method is lower than that of the STTD method.

4. Conclusion

Considering that hyperspectral images have more spectral bands
with high correlation, the one-dimensional vector of spectral sequence
data contains limited information that can be extracted compared to the

two-dimensional matrix data, posing challenges to spectral-based deep
learning model for hyperspectral target detection. To address these
challenges, this paper proposes a novel hyperspectral target detection
method that leverages atrous convolutional neural network and GAF. By
transforming the one-dimensional vector of spectral sequence data into
two-dimensional matrix data, the proposed method overcome the limi-
tations of one-dimensional vector of spectral features extraction and
improve the performance of target detection. Specifically, a two-step
strategy is firstly employed to solve the common issue of lacking
labelled samples for deep learning-based model, followed by the GAF. A
priori target spectrum is modulated using Gaussian white noise with
different SNRs, and the two-dimensional band relationmaps of sufficient
target samples are obtained by GAF. The two-dimensional band relation
maps of the pure background samples are obtained by GAF and SAM
detector to complete the preparation of training data. Subsequently,
according to the characteristics of the two-dimensional spectral band
relation maps, a spectral feature extraction network based on atrous
convolution is proposed, where the training data are fed into the
network to distinguish target and background spectra. Finally, back-
ground suppression is achieved by the exponential function, the power
function, and the normalization operation. Comprehensive experiments
conducted on four real-world hyperspectral datasets demonstrate that
the proposed method significantly outperforms 9 existing state-of-the-
art detection methods.

It should be noted that, since the proposed method is achieved on
two-dimensional matrix data for feature extraction and network
training, it inherently requires more training time compared to methods
implemented on one-dimensional data. Despite this increase in training
time, the use of atrous convolution helped mitigate the issue by
expanding the receptive field and accelerating convergence. However,
the training time of network remains slightly longer than that of one-
dimensional networks. The proposed method leverages the redun-
dancy inherent in the strong spectral band correlations of hyperspectral
data, effectively trading efficiency for improved accuracy in hyper-
spectral target detection.
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